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Abstract 
 

The association of chronic inflammation with development of human cancer is well recognized. 

There are number of reports of involvement of inflammatory process in the initiation and progress of cancer. 

The search for selective inhibitors of Cyclooxygenase-2 isoenzymes and that too from natural origin is 

considerably important. Rubia cordifolia L. and Glycyrrhiza glabra L. find an important place in the 

Ayurvedic system of medicine. Several secondary plant metabolites were isolated from roots of R. cordifolia 

and rhizomes of G. glabra and were investigated for the COX-2 inhibitory activity using Cayman COX 

(ovine) inhibitory screening assay. A few molecules showed potent COX-2 inhibitory activity which may 

serve as lead molecules for cancer chemoprevention studies.  
 

Keywords:  Cancer chemoprevention; Rubia cordifolia; Glycyrrhiza glabra; phytochemicals;  

                     COX-2 inhibitors. 
 

 

1.  Introduction 

 

Chronic inflammation induced by 

biological, chemical and physical factors has been 

associated with increased risk of human cancer at 

various sites [1, 2]. 
 

Autoimmune and 

inflammatory reactions of uncertain etiology (e.g. 

ulcerative colitis, pancreatitis etc.) are also 

associated with increased risk of cancer. There are 

multiple lines of evidence of an association 

between inflammatory tissue damage and the 

development of cancer [3].
 
In general, longer the 

inflammation persists, the higher the risk of 

cancer. Inflammation is a step by step process that 

includes injury, repair and resolution. All 

inflammatory cells (neutrophils, monocytes, 
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macrophages, eosinophils, dendritic cells, mast 

cells and lymphocytes) are recruited after damage 

or an infection and may contribute to the onset and 

progression of cancer. Key molecular players that 

link inflammation to genetic alterations are 

prostaglandins, cytokines, nuclear factor NFκB, 

chemokines and angiogenic factor [4]. Recent 

research has shown that increased amount of 

prostaglandin E2 in both human and experimental 

tumors inhibit host immunity and may play an 

important role in carcinogenesis [5].
 

Cyclooxygenase (COX-2), an important enzyme 

involved in mediating the inflammatory process 

produces PGE2 from endogenous arachidonic acid 

[6]. Several isoforms of COX have been reported. 

COX-1, the constitutive isoenzyme that is 

expressed in most tissues, controls homeostasis by 

maintaining the physiological level of 

prostaglandins. COX-2 is inducible and 

dramatically up-regulated by a wide variety of 

stimuli such as cytokines, mitogens, oncogenes, 

growth factor and tumor promoters and is 

detectable in only certain types of tissues [3, 7].
 

Elevated levels of PGE2 and enhanced COX-2 

activity are frequently observed in a variety of 

malignancies, including those of the breast, 

prostate, bladder, liver, pancreas, skin, lung, colon 

and brain [8, 9, 10]. Therefore, the suppression of 

prostaglandin synthesis through the selective 

inhibition of COX-2 is now regarded as a 

promising and practical approach to cancer 

prevention. COX inhibitors such as celecoxib, 

piroxicam, sulindac and aspirin have been shown 

to reduce the formation and growth of 

experimentally induced cancer in animals [11, 12, 

13]. A concern relevant to the use of COX-2 

inhibitors is also associated with adverse side 

effects that recently resulted in the withdrawl of 

Vioxx and Celebrax that were being investigated 

as potential cancer chemopreventive agents [14, 

15]. The major reasons for the side effects were 

related to high doses of these agents and it was 

generally concluded that COX-2 inhibitors induce 

cardiovascular problems when prescribed at high 

doses over long durations [16].
 
  

The COX-2 inhibitors can also inhibit COX-1 

as well. This is problematic because COX-1 

inhibition ‘turns off’ some important functions 

such as the repair and maintenance of stomach 

lining, which result in varying degrees of gastric 

ulcerations, perforation or obstructions [17]. So, 

there is a need of drugs which inhibit COX-2 

without affecting COX-1 (selective COX-2 

inhibitors). Selective COX-2 inhibitors hold 

promise for cancer chemoprevention. More 

recently, human clinical trials with COX-2 

inhibitor drugs have shown similar anti-

inflammatory and analgesic efficacy to traditional 

NSAIDs with significantly less gastrotoxicity [18]. 

However, these products offer some advantage in 

terms of side effects but they are nine times more 

expensive on a daily dose comparison [19]. 

Fortunately, there is now some evidence that 

natural COX-2 inhibitors may obstruct the 

production of pain and inflammation and do so in 

a more gentle manner and for less money. 

Baumann and coworkers were the first to report in 

a study that some dietary polyphenols inhibit 

arachidonic acid peroxidation [20]. Since then 

several researches have reported that many dietary 

polyphenols possess COX-2 inhibitory or 

stimulatory effects [21, 22, 23]. COX inhibition by 

polyphenols may account for anti-inflammatory 

effects, which reduce prostaglandin synthesis. 

Therefore, it should be noted that the concurrent 

use of polyphenols and NSAIDs could be 

beneficial or deleterious and thus necessitates 

constant attention by healthcare providers. 

We have been testing different classes of 

synthetic compounds and their derivatives for 

COX-2 inhibitory activities [24, 25, 26] besides 

evaluating antimutagenic/antigenotoxic activity of 

polyphenolic extract/fractions isolated from 

Ayurvedic medicinal plants [27-34]. In the present 

study, it was planned to evaluate the COX-2 

inhibitory potential of various polyphenols and 

related compounds (natural plant products) 

isolated from medicinal plants viz. R. cordifolia 

and G. glabra.  

 

2. Materials and methods 

 

The roots of R. cordifolia and G. glabra were 

purchased from a local market at Amritsar, India. 

Voucher specimens No. 0342-B-03/2006 (R. 

cordifolia) and 0342-A-03/2006 (G. glabra) have 

been kept in the herbarium of the Department of 

Botanical and Environmental Sciences, Guru 
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Nanak Dev University, Amritsar, Punjab, India. 

Plant material were washed with tap water, dried 

at 40
0
C and crushed to make powder. The 

bioassay kit was purchased from Cayman 

Chemicals. 

 

2.1 Isolation of Phytochemicals 

The powdered roots of R. cordifolia and 

rhizomes of G.glabra were percolated with 80% 

methanol to obtain the methanol extract. The 

methanol extract was further fractionated with a 

series of organic solvents to obtain respective 

fractions. The various molecules were isolated as 

per Flow chart I, IIa and IIb. Structure elucidation 

of the isolated molecules was done using Nuclear 

Magnetic Resonance and Mass spectroscopic 

techniques.  

 

 
Flow Chart I:  Isolation of phytochemicals from Rubia cordifolia L. 
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Flow Chart IIa: Isolation of phytochemicals from Glycyrrhiza glabra L. 

 

2.2 COX-2 inhibitory activity  

In vitro COX-2 inhibiting activities of the 

compounds have been evaluated using ‘COX 

(ovine) inhibitor screening assay’ kit with 96-well 

plates. Both ovine COX-1 and COX-2 enzymes 

were included. This screening assay directly 

measures PGF2 produced by SnCl2 reduction of 

COX-derived PGH2.  COX-1, COX-2, initial 

activity tubes were prepared taking 950l of 

reaction buffer, 10l of heme and 10l of COX-1 

and COX-2 enzymes in respective tubes. 

Similarly, COX-1, COX-2 inhibitor tubes were 

prepared by adding 20l of inhibitor (compound 

under test) in each tube in addition to the above 

ingredients. The background tubes correspond to 

inactivated COX-1 and COX-2 enzymes obtained 

after keeping the tubes containing enzymes in 

boiling water for 3 min. along with vehicle 
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control. Reactions were initiated by adding 10l 

of arachidonic acid in each tube and quenched 

with 50l of IM HCl. PGH2 thus formed was 

reduced to PGF2 by adding 100l SnCl2. The 

prostaglandin produced in each well was 

quantified using broadly specific prostaglandin 

antiserum that binds with major prostaglandins 

and reading the 96-well plate at 405 nm. The wells 

of the 96-well plate showing low absorption at 

405 nm indicated the low level of prostaglandins 

in these wells and hence the less activity of the 

enzyme. Therefore, the COX inhibitory activities 

of the compounds could be quantified from the 

absorption values of different wells of the 96-well 

plate.

 
 

Flow chart IIb: Isolation of phytochemicals from Glycyrrhiza glabra L. 
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Table 1: In vitro percentage inhibition and IC50 values for COX-1 and COX-2 enzymes by phytochemicals 

isolated from R. cordifolia L. 

 

Compound %  Inhibition  IC50 (µM) 

 

COX-2 

Selectivity* 

  

COX-2 

 
 

1 µM      10 µM 

 

COX-1 

 

  

COX-2       COX-1 

 

 

  

10 µM 
 

 

  

O

O

OH

OH1

2

3

45

6

7

8 9

10

A B C

 
 Alizarin (RUC-1) 

 

 

58.60 

 

 

92.63 

 

 

40.20 

 

 

 

 

 

<1.0 

 

 

>10 

 

 

>10 

 

O

OH

OCH 3

O

1

3

4

4a

5

8

1'

3 '

4 '
5 '  

Mollugin (RUC-2) 

 

 

49.05 

 

 

88.53 

 

 

26.08 

  

 

1.21 

 

 

>10 

 

 

> 8.26 

 
O

O

OH

1

2

3
45

6

7

8 9

10

A B C
OH

O
O

OH

OH

HO

O

O
OH

OH
HO

1`

2`
3`

4`

5`
6`

1``

2`` 3`` 4``

5``

 
Lucidin primveroside(RUC-3) 

 

 

47.63 

 

 

91.22 

 

 

42.34 

  

 

1.49 

 

 

 

>10 

 

 

> 6.71 

 

 
Rofecoxib** 

 

 

 

75 

 

 

 

100 

 

 

 

75 

  

 

 

0.3 

 

 

 

40 

 

 

 

~133 

 

 
Celecoxib ** 

 

 

 

50 

 

 

 

100 

 

 

 

65 

  

 

 

1.2 

 

 

 

14 

 

 

 

~10 

 

 

**Reported in literature [63]. 

*COX-2 selectivity = IC50 (COX-1)/ IC50 (COX-2) 
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Table 2: In vitro percentage inhibition and IC50 value for COX-1 and COX-2 enzymes by phytochemicals of 

G. glabra L. 
Compound %  Inhibition  IC50 (µM) 

 

COX-2 

Selectivity* 

  

COX-2 

 
 

1 µM      10 µM 

 

COX-1 

 

  

COX-2       COX-1 

 

 

  

10 µM 
 

 

  

O

O

O

O O

OH
HO

H

HO

OH

OH

HO

OH

OH

H
4`

5`

6`

1`

2`

3`

1

2

3

4

5

6

1`` 2``

3``
4``

5``

6``

1```

2```

3```

4```

5```





 `

 
Isoliquiritin apioside(Gly-1) 

 

 

 

 

57.2 

 

 

 

89.03 

 

 

 

62.74 

  

 

 

<1.0 

 

 

 

<10 

 

 

 

<10 

O

OH O

HO

OH

OH

1

2

3

45

6

7
8

9

10

1`

2`

3`

4`

5`

6`

 
Kaempferol(Gly-2) 

 

 

 

51.94 

 

 

97.08 

 

 

64.24 

  

 

<1.0 

 

 

<10 

 

 

<10 

 

O

O

O

O

COOH

HO

HO

HO

HO
COOH

H

O

H

H

COOH

H

 
Glycyrrhizic acid(Gly-3) 

 

 

 

 

72.60 

 

 

 

95.08 

 

 

 

18.66 

  

 

 

<1.0 

 

 

 

>10 

 

 

 

>10 

 

 
Rofecoxib** 

 

 

 

75 

 

 

 

100 

 

 

 

75 

  

 

 

0.3 

 

 

 

40 

 

 

 

~133 

 

 
Celecoxib ** 

 

 

 

50 

 

 

 

100 

 

 

 

65 

  

 

 

1.2 

 

 

 

14 

 

 

 

~10 

 

 

**Reported in literature [63]. 

*COX-2 selectivity = IC50 (COX-1)/ IC50 (COX-2) 
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3. Results 

 

Some phytoconstituents isolated from R. 

cordifolia and G. glabra showed promising results 

as selective COX-2 inhibitors.  

 

3.1 Rubia cordifolia L.  

As seen from Table 1 Alizarin (RUC-1) was 

found to be the most selective inhibitor of COX-2 

(COX-2 selectivity >10) among the compounds 

isolated from R.cordifolia. At a concentration of 

10 μM, it inhibited the COX-1 by 40.20% whereas 

COX-2 was inhibited by 92.63%. Mollugin 

(RUC-2) inhibited the COX-2 by 88.53% at 

concentration of 10 μM in comparison to 

inhibition of COX-1 by 26.08%. It showed COX-2 

selectivity >8.26. Lucidin primveroside (RUC-3) 

also inhibited COX-2 (COX-2 selectivity >6.71) It 

showed 42.34% inhibition of COX-1 at 

concentration of 10 μM and inhibited the COX-2 

by 91.22% at the same concentration.  

 

3.2 Glycyrrhiza glabra L.   

Isoliquiritin apioside (Gly-1) showed 

89.03% inhibition of COX-2 at 10 μM and 

62.74% of COX-1. The molecule showed COX-2 

selectivity less than 10. Kaempferol (Gly-2) 

inhibited COX-2 by 97.08% at a concentration of 

10 μM in comparison to COX-1 by 64.24%. It 

showed COX-2 selectivity less than 10 (Table 2). 

Glycyrrhizic acid (Gly-3) was found to be most 

selective inhibitor of COX-2 amongst the 

phytochemicals isolated from G.glabra. At a 

concentration of 10 μM, it inhibited the activity of 

COX-2 by 95.08% as compared to COX-1 which 

was inhibited by18.66%. It showed COX-2 

selectivity more than 10 (Table 2). 

 

4. Discussion 

 

Carcinogenesis is a long and multistep 

process that include initiation, promotion and 

progression [35]. Initiation is a result of rapid and 

irreparable assault to the cell. Causes of cancer 

initiation include oxidative stress, chronic 

inflammation [36] and genotoxic damage by 

carcinogen [37]. DNA damage can result in arrest 

or induction of transcription, induction of signal 

transduction pathways, replication errors and 

genomic instability, all processes associated with 

carcinogenesis [38]. COX-2, the inducible form of 

cyclooxygenase that catalyse the rate-limiting 

steps in prostaglandin synthesis from arachidonic 

acid, plays an important role in cancer. Several 

lines of evidence indicate the initial role of COX-2 

in carcinogenesis as a well-established tumor 

promoter [39]. Over expression of COX-2 leads to 

malignant cell proliferation and invasion and this 

effect is reversed by non-steroidal anti-

inflammatory agents elucidating the importance of 

COX-2 inhibitors in cancer chemoprevention [40]. 

Although there are various drugs as COX-2 

inhibitors are available in the market but due to 

their adverse side effects, continuous withdrawal 

of these drugs takes place from time to time. There 

is utmost need to search for the natural selective 

COX-2 inhibitors (mainly of dietary origin) as 

these are regarded as safe. 

Polyphenols are one such class of molecules 

which vary from simple structures to complex 

ones and may act as NSAIDs like compounds [41] 

and this activity appeared to be related to their 

phenol function [42]. Mollugin (napthaquinone), 

Alizarin (anthraquinone) and Lucidin 

primveroside (anthraquinone glycoside) were 

isolated from R. cordifolia.  These molecules are 

of much interest as cancer chemopreventive 

agents. However, they have been very less 

explored for COX-2 inhibitory activity. The 

present investigation showed that mollugin (RUC-

2), selectively inhibited COX-2. This is in 

consistence with the report of Oku and Ishiguro 

that 1, 4-napthaquinones (impatienolate and 

balsaminolate) isolated from Impatiens balsamina 

L. showed selective COX-2 inhibitory activities 

[43]. Napthaquinone derivatives, 

furonapthaquinone and β-Lapachone were also 

shown to exhibit selective inhibition of COX-2 

[44, 45]. Shikonin, another napthaquinone 

derivative has been reported as a potent inhibitor 

of prostaglandin E2 [46]. The cyclooxygenase 

inhibitory activity of anthraquinone molecules 

Alizarin (RUC-1) and Lucidin primveroside 

(RUC-3) is in concordance with the various 

reports that anthraquinone derivatives can inhibit 

cyclooxygenases. Anthraquinone rich extracts of 

Aloe vera gel possess anti-inflammatory activity 

by inhibiting the arachidonic acid pathway via 
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inhibition of cyclooxygenases [47]. Recently, Gan 

and coworkers reported that 3-

alkylaminopropoxy-9,10-anthraquinone 

derivatives interfere with the conversion of 

arachidonic acid to prostaglandin (PGH2) [48]. 

Among the molecules isolated from G.glabra, 

Glycyrrhizic acid (Gly-3) (triterpene glycoside) 

was the most potent in inhibiting the COX-2 

activity. It showed strong inhibition of COX-2 as 

compared with COX-1. Triterpenes isolated from 

aerial parts of Aralia cordata possess COX-2 

inhibitory activity [49]. Asiatic acid, a triterpene 

isolated from leaves of Centella asiatica inhibited 

the nitric oxide and prostaglandin E2 production in 

RAW 264.7 macrophage cells [50].
 
Triterpenes 

isolated from Eriobotrya japonica prevent 

pulmonary inflammatory diseases by inhibiting 

iNOS, COX-2 and cytokines (TNF-alpha, IL-Ibeta 

and IL-8) production in human lung epithelial 

cells (A-549) [51]. Kaempferol (Gly-2) isolated 

from G.glabra also showed moderate selectivity 

for COX-2. Flavonoids are the well studied class 

of polyphenols as COX-2 inhibitors. Kaempferol 

and its derivatives isolated from seeds of Prunus 

tomentosa exhibited inhibitory activities on nitric 

oxide (NO) and prostaglandin E2 (COX-2) 

production [52]. Kaempferol and quercetin 

exhibited anti-inflammatory activities by 

inhibiting iNOS and COX-2 protein levels in 

cultured human umbilical vein endothelial cells 

[53]. Luteolin and galangin, well known flavonoid 

molecules were studied as first dietary 

polyphenols as inhibitors of arachidonic acid 

peroxidation [20]. After this Chrysin and luteolin 

were considered as potent anti-inflammatory 

agents as they effectively suppressed COX-2 

activity [54]. In 2008, Li and coworkers [55] 

reported that a new molecule Malsudone along 

with known flavonoids luteolin, isoquercetin, 7-

methoxyflavone and luteolin-7-O--glycoside 

possess potent inhibitory effect on COX-2 with 

moderate inhibition of COX-1. Quercetin was 

demonstrated to protect against colon cancer by 

suppressing the expression of proinflammatory 

mediators (COX-1, COX-2, iNOS) [56]. 

Kolaviron, isolated from seeds of Garcinia kola 

has been reported to possess anti-inflammatory 

activities by inhibiting COX-2 and iNOS 

expression through down regulation of NF-Kappa 

B and AP-1 DNA binding activity [57]. 

Isoliquiritin apioside (Gly-1) a chalcone glycoside 

also showed good activity as COX-2 inhibitor. 

Certain reports show that chalcones and its 

derivatives also possess the potential to inhibit 

COX-2 [58]. Some chalcone derivatives were 

shown to be potent and selective COX-2 inhibitors 

[59]. Isoliquiritigenin isolated from roots of 

Glycyrrhiza uralensis [60] and Cardamnin, 

isolated from the fruits of Alpinia rafflesiana [61] 

inhibited COX-2 and iNOS expression in RAW 

264.7 macrophage cells. 

Among the phytochemicals tested from the 

medicinal plants, the percentage inhibition and 

IC50 values of ‘RUC-1’ ‘RUC-2’ from R. 

cordifolia and ‘Gly-3’ from G. glabra are in 

between that of corresponding reported values of 

Rofecoxib and Celecoxib. The natural origin and 

moderate selectivity of these compounds for 

COX-2 in comparison to rofecoxib may also make 

them better substitutes of Rofecoxib and 

Celecoxib as their too much selectivity for COX-2 

leads to the cardiac toxicity. Studies carried out in 

our laboratory have also shown these molecules to 

possess antigenotoxic activity against H2O2 and 

4NQO in SOS chromotest using E. coli PQ37 and 

in Comet assay using human blood lymphocytes 

[32, 62]. 

The chemopreventive effects of various 

phytochemicals have often been associated with 

their anti-inflammatory activities especially due to 

the inhibition of COX-2. Since the isolated 

phytochemicals showed potent COX-2 inhibitory 

activity these may serve as potential candidates for 

chemopreventive/chemotherapeutic studies. 
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